Pairwise Choice Markov Chains
نویسندگان
چکیده
As datasets capturing human choices grow in richness and scale—particularly in online domains—there is an increasing need for choice models that escape traditional choice-theoretic axioms such as regularity, stochastic transitivity, and Luce’s choice axiom. In this work we introduce the Pairwise Choice Markov Chain (PCMC) model of discrete choice, an inferentially tractable model that does not assume any of the above axioms while still satisfying the foundational axiom of uniform expansion, a considerably weaker assumption than Luce’s choice axiom. We show that the PCMC model significantly outperforms both the Multinomial Logit (MNL) model and a mixed MNL (MMNL) model in prediction tasks on both synthetic and empirical datasets known to exhibit violations of Luce’s axiom. Our analysis also synthesizes several recent observations connecting the Multinomial Logit model and Markov chains; the PCMC model retains the Multinomial Logit model as a special case.
منابع مشابه
Empirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کاملSwitching Pairwise Markov Chains for Non Stationary Textured Images Segmentation
Hidden Markov chains (HMCs) have been extensively used to solve a wide range of problems related to computer vision, signal processing (Cappé, O., et al 2005) or bioinformatics (Koski, T., 2001). Such notoriety is due to their ability to recover the hidden data of interest using the entire observable signal thanks to some Bayesian techniques like MPM and MAP. HMCs have then been generalized to ...
متن کاملExit Time Tails From Pairwise Decorrelation in Hidden Markov Chains, With Applications to Dynamical Percolation
Consider a Markov process ωt at stationarity and some event C (a subset of the state-space of the process). A natural measure of correlations in the process is the pairwise correlation P[ω0,ωt∈C]−P[ω0∈C]2. A second natural measure is the probability of the continual occurrence event {ωs∈C,∀s∈[0,t]}. We show that for reversible Markov chains, and any event C, pairwise decorrelation of the event ...
متن کامل